1
AIEEE 2010
+4
-1
The line $$L$$ given by $${x \over 5} + {y \over b} = 1$$ passes through the point $$\left( {13,32} \right)$$. The line K is parrallel to $$L$$ and has the equation $${x \over c} + {y \over 3} = 1.$$ Then the distance between $$L$$ and $$K$$ is :
A
$$\sqrt {17}$$
B
$${{17} \over {\sqrt {15} }}$$
C
$${{23} \over {\sqrt {17} }}$$
D
$${{23} \over {\sqrt {15} }}$$
2
AIEEE 2009
+4
-1
The shortest distance between the line $$y - x = 1$$ and the curve $$x = {y^2}$$ is :
A
$${{2\sqrt 3 } \over 8}$$
B
$${{3\sqrt 2 } \over 5}$$
C
$${{\sqrt 3 } \over 4}$$
D
$${{3\sqrt 2 } \over 8}$$
3
AIEEE 2009
+4
-1
The lines $$p\left( {{p^2} + 1} \right)x - y + q = 0$$ and $$\left( {{p^2} + 1} \right){}^2x + \left( {{p^2} + 1} \right)y + 2q$$ $$=0$$ are perpendicular to a common line for :
A
exactly one values of $$p$$
B
exactly two values of $$p$$
C
more than two values of $$p$$
D
no value of $$p$$
4
AIEEE 2008
+4
-1
The perpendicular bisector of the line segment joining P(1, 4) and Q(k, 3) has y-intercept -4. Then a possible value of k is :
A
1
B
2
C
-2
D
-4
EXAM MAP
Medical
NEET