1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If the equation of the locus of a point equidistant from the point $$\left( {{a_{1,}}{b_1}} \right)$$ and $$\left( {{a_{2,}}{b_2}} \right)$$ is
$$\left( {{a_1} - {a_2}} \right)x + \left( {{b_1} - {b_2}} \right)y + c = 0$$ , then the value of $$'c'$$ is :
A
$$\sqrt {{a_1}^2 + {b_1}^2 - {a_2}^2 - {b_2}^2} $$
B
$${1 \over 2}\left( {{a_2}^2 + {b_2}^2 - {a_1}^2 - {b_1}^2} \right)$$
C
$${{a_1}^2 - {a_2}^2 + {b_1}^2 - {b_2}^2}$$
D
$${1 \over 2}\left( {{a_1}^2 + {a_2}^2 + {b_1}^2 + {b_2}^2} \right)$$.
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $${x_1},{x_2},{x_3}$$ and $${y_1},{y_2},{y_3}$$ are both in G.P. with the same common ratio, then the points $$\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)$$ and $$\left( {{x_3},{y_3}} \right)$$ :
A
are vertices of a triangle
B
lie on a straight line
C
lie on an ellipse
D
lie on a circle
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Locus of centroid of the triangle whose vertices are $$\left( {a\cos t,a\sin t} \right),\left( {b\sin t, - b\cos t} \right)$$ and $$\left( {1,0} \right),$$ where $$t$$ is a parameter, is :
A
$${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
B
$${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
C
$${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
D
$${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
4
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
The pair of lines represented by $$$3a{x^2} + 5xy + \left( {{a^2} - 2} \right){y^2} = 0$$$

are perpendicular to each other for :
A
two values of $$a$$
B
$$\forall \,a$$
C
for one value of $$a$$
D
for no values of $$a$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12