1
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{A}(-1,1)$$ and $$\mathrm{B}(2,3)$$ be two points and $$\mathrm{P}$$ be a variable point above the line $$\mathrm{AB}$$ such that the area of $$\triangle \mathrm{PAB}$$ is 10. If the locus of $$\mathrm{P}$$ is $$\mathrm{a} x+\mathrm{by}=15$$, then $$5 \mathrm{a}+2 \mathrm{~b}$$ is :

A
$$-\frac{12}{5}$$
B
$$-\frac{6}{5}$$
C
6
D
4
2
JEE Main 2024 (Online) 5th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let two straight lines drawn from the origin $$\mathrm{O}$$ intersect the line $$3 x+4 y=12$$ at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ such that $$\triangle \mathrm{OPQ}$$ is an isosceles triangle and $$\angle \mathrm{POQ}=90^{\circ}$$. If $$l=\mathrm{OP}^2+\mathrm{PQ}^2+\mathrm{QO}^2$$, then the greatest integer less than or equal to $$l$$ is :

A
42
B
46
C
48
D
44
3
JEE Main 2024 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The vertices of a triangle are $$\mathrm{A}(-1,3), \mathrm{B}(-2,2)$$ and $$\mathrm{C}(3,-1)$$. A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :

A
$$-x+y-(2-\sqrt{2})=0$$
B
$$x+y-(2-\sqrt{2})=0$$
C
$$x+y+(2-\sqrt{2})=0$$
D
$$x-y-(2+\sqrt{2})=0$$
4
JEE Main 2024 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$A(a, b), B(3,4)$$ and $$C(-6,-8)$$ respectively denote the centroid, circumcentre and orthocentre of a triangle. Then, the distance of the point $$P(2 a+3,7 b+5)$$ from the line $$2 x+3 y-4=0$$ measured parallel to the line $$x-2 y-1=0$$ is

A
$$\frac{17 \sqrt{5}}{6}$$
B
$$\frac{15 \sqrt{5}}{7}$$
C
$$\frac{17 \sqrt{5}}{7}$$
D
$$\frac{\sqrt{5}}{17}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12