If the locus of the point, whose distances from the point $$(2,1)$$ and $$(1,3)$$ are in the ratio $$5: 4$$, is $$a x^2+b y^2+c x y+d x+e y+170=0$$, then the value of $$a^2+2 b+3 c+4 d+e$$ is equal to :
Let a variable line of slope $$m>0$$ passing through the point $$(4,-9)$$ intersect the coordinate axes at the points $$A$$ and $$B$$. The minimum value of the sum of the distances of $$A$$ and $$B$$ from the origin is
Let $$\mathrm{A}(-1,1)$$ and $$\mathrm{B}(2,3)$$ be two points and $$\mathrm{P}$$ be a variable point above the line $$\mathrm{AB}$$ such that the area of $$\triangle \mathrm{PAB}$$ is 10. If the locus of $$\mathrm{P}$$ is $$\mathrm{a} x+\mathrm{by}=15$$, then $$5 \mathrm{a}+2 \mathrm{~b}$$ is :
Let two straight lines drawn from the origin $$\mathrm{O}$$ intersect the line $$3 x+4 y=12$$ at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ such that $$\triangle \mathrm{OPQ}$$ is an isosceles triangle and $$\angle \mathrm{POQ}=90^{\circ}$$. If $$l=\mathrm{OP}^2+\mathrm{PQ}^2+\mathrm{QO}^2$$, then the greatest integer less than or equal to $$l$$ is :