Let a triangle be bounded by the lines L1 : 2x + 5y = 10; L2 : $$-$$4x + 3y = 12 and the line L3, which passes through the point P(2, 3), intersects L2 at A and L1 at B. If the point P divides the line-segment AB, internally in the ratio 1 : 3, then the area of the triangle is equal to :
In an isosceles triangle ABC, the vertex A is (6, 1) and the equation of the base BC is 2x + y = 4. Let the point B lie on the line x + 3y = 7. If ($$\alpha$$, $$\beta$$) is the centroid of $$\Delta$$ABC, then 15($$\alpha$$ + $$\beta$$) is equal to :
Let R be the point (3, 7) and let P and Q be two points on the line x + y = 5 such that PQR is an equilateral triangle. Then the area of $$\Delta$$PQR is :
Let the area of the triangle with vertices A(1, $$\alpha$$), B($$\alpha$$, 0) and C(0, $$\alpha$$) be 4 sq. units. If the points ($$\alpha$$, $$-$$$$\alpha$$), ($$-$$$$\alpha$$, $$\alpha$$) and ($$\alpha$$2, $$\beta$$) are collinear, then $$\beta$$ is equal to :