1
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The straight lines $$\mathrm{l_{1}}$$ and $$\mathrm{l_{2}}$$ pass through the origin and trisect the line segment of the line L : $$9 x+5 y=45$$ between the axes. If $$\mathrm{m}_{1}$$ and $$\mathrm{m}_{2}$$ are the slopes of the lines $$\mathrm{l_{1}}$$ and $$\mathrm{l_{2}}$$, then the point of intersection of the line $$\mathrm{y=\left(m_{1}+m_{2}\right)}x$$ with L lies on :

A
$$6 x-y=15$$
B
$$6 x+y=10$$
C
$$\mathrm{y}-x=5$$
D
$$y-2 x=5$$
2
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

The combined equation of the two lines $$ax+by+c=0$$ and $$a'x+b'y+c'=0$$ can be written as

$$(ax+by+c)(a'x+b'y+c')=0$$.

The equation of the angle bisectors of the lines represented by the equation $$2x^2+xy-3y^2=0$$ is :

A
$$3{x^2} + xy - 2{y^2} = 0$$
B
$${x^2} - {y^2} - 10xy = 0$$
C
$${x^2} - {y^2} + 10xy = 0$$
D
$$3{x^2} + 5xy + 2{y^2} = 0$$
3
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the orthocentre of the triangle, whose vertices are (1, 2), (2, 3) and (3, 1) is $$(\alpha,\beta)$$, then the quadratic equation whose roots are $$\alpha+4\beta$$ and $$4\alpha+\beta$$, is :

A
$$x^2-20x+99=0$$
B
$$x^2-22x+120=0$$
C
$$x^2-19x+90=0$$
D
$$x^2-18x+80=0$$
4
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$B$$ and $$C$$ be the two points on the line $$y+x=0$$ such that $$B$$ and $$C$$ are symmetric with respect to the origin. Suppose $$A$$ is a point on $$y-2 x=2$$ such that $$\triangle A B C$$ is an equilateral triangle. Then, the area of the $$\triangle A B C$$ is :

A
$$\frac{10}{\sqrt{3}}$$
B
$$2 \sqrt{3}$$
C
$$3 \sqrt{3}$$
D
$$\frac{8}{\sqrt{3}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12