A variable line $$\mathrm{L}$$ passes through the point $$(3,5)$$ and intersects the positive coordinate axes at the points $$\mathrm{A}$$ and $$\mathrm{B}$$. The minimum area of the triangle $$\mathrm{OAB}$$, where $$\mathrm{O}$$ is the origin, is :
A ray of light coming from the point $$\mathrm{P}(1,2)$$ gets reflected from the point $$\mathrm{Q}$$ on the $$x$$-axis and then passes through the point $$R(4,3)$$. If the point $$S(h, k)$$ is such that $$P Q R S$$ is a parallelogram, then $$hk^2$$ is equal to:
If the line segment joining the points $$(5,2)$$ and $$(2, a)$$ subtends an angle $$\frac{\pi}{4}$$ at the origin, then the absolute value of the product of all possible values of $a$ is :
The equations of two sides $$\mathrm{AB}$$ and $$\mathrm{AC}$$ of a triangle $$\mathrm{ABC}$$ are $$4 x+y=14$$ and $$3 x-2 y=5$$, respectively. The point $$\left(2,-\frac{4}{3}\right)$$ divides the third side $$\mathrm{BC}$$ internally in the ratio $$2: 1$$, the equation of the side $$\mathrm{BC}$$ is