1
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
The lines $$p\left( {{p^2} + 1} \right)x - y + q = 0$$ and $$\left( {{p^2} + 1} \right){}^2x + \left( {{p^2} + 1} \right)y + 2q$$ $$=0$$ are perpendicular to a common line for :
A
exactly one values of $$p$$
B
exactly two values of $$p$$
C
more than two values of $$p$$
D
no value of $$p$$
2
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
The perpendicular bisector of the line segment joining P(1, 4) and Q(k, 3) has y-intercept -4. Then a possible value of k is :
A
1
B
2
C
-2
D
-4
3
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Let $$P = \left( { - 1,0} \right),\,Q = \left( {0,0} \right)$$ and $$R = \left( {3,3\sqrt 3 } \right)$$ be three point. The equation of the bisector of the angle $$PQR$$ is :
A
$${{\sqrt 3 } \over 2}x + y = 0$$
B
$$x + \sqrt {3y} = 0$$
C
$$\sqrt 3 x + y = 0$$
D
$$x + {{\sqrt 3 } \over 2}y = 0$$
4
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If one of the lines of $$m{y^2} + \left( {1 - {m^2}} \right)xy - m{x^2} = 0$$ is a bisector of angle between the lines $$xy = 0,$$ then $$m$$ is :
A
$$1$$
B
$$2$$
C
$$-1/2$$
D
$$-2$$
JEE Main Subjects
EXAM MAP