1
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The solution of the differential equation $$(x^2+y^2) \mathrm{d} x-5 x y \mathrm{~d} y=0, y(1)=0$$, is :

A
$$\left|x^2-4 y^2\right|^5=x^2$$
B
$$\left|x^2-2 y^2\right|^6=x$$
C
$$\left|x^2-2 y^2\right|^5=x^2$$
D
$$\left|x^2-4 y^2\right|^6=x$$
2
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The solution curve, of the differential equation $$2 y \frac{\mathrm{d} y}{\mathrm{~d} x}+3=5 \frac{\mathrm{d} y}{\mathrm{~d} x}$$, passing through the point $$(0,1)$$ is a conic, whose vertex lies on the line :

A
$$2 x+3 y=-9$$
B
$$2 x+3 y=-6$$
C
$$2 x+3 y=9$$
D
$$2 x+3 y=6$$
3
JEE Main 2024 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(x)$$ be the solution curve of the differential equation $$\sec y \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x \sin y=x^3 \cos y, y(1)=0$$. Then $$y(\sqrt{3})$$ is equal to:

A
$$\frac{\pi}{6}$$
B
$$\frac{\pi}{12}$$
C
$$\frac{\pi}{3}$$
D
$$\frac{\pi}{4}$$
4
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)$$ be a positive function such that the area bounded by $$y=f(x), y=0$$ from $$x=0$$ to $$x=a>0$$ is $$e^{-a}+4 a^2+a-1$$. Then the differential equation, whose general solution is $$y=c_1 f(x)+c_2$$, where $$c_1$$ and $$c_2$$ are arbitrary constants, is

A
$$\left(8 e^x+1\right) \frac{d^2 y}{d x^2}-\frac{d y}{d x}=0$$
B
$$\left(8 e^x+1\right) \frac{d^2 y}{d x^2}+\frac{d y}{d x}=0$$
C
$$\left(8 e^x-1\right) \frac{d^2 y}{d x^2}-\frac{d y}{d x}=0$$
D
$$\left(8 e^x-1\right) \frac{d^2 y}{d x^2}+\frac{d y}{d x}=0$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12