If the solution curve of the differential equation
$$(({\tan ^{ - 1}}y) - x)dy = (1 + {y^2})dx$$ passes through the point (1, 0), then the abscissa of the point on the curve whose ordinate is tan(1), is
If $${{dy} \over {dx}} + {{{2^{x - y}}({2^y} - 1)} \over {{2^x} - 1}} = 0$$, x, y > 0, y(1) = 1, then y(2) is equal to :
If $$y = y(x)$$ is the solution of the differential equation
$$x{{dy} \over {dx}} + 2y = x\,{e^x}$$, $$y(1) = 0$$ then the local maximum value
of the function $$z(x) = {x^2}y(x) - {e^x},\,x \in R$$ is :
If the solution of the differential equation
$${{dy} \over {dx}} + {e^x}\left( {{x^2} - 2} \right)y = \left( {{x^2} - 2x} \right)\left( {{x^2} - 2} \right){e^{2x}}$$ satisfies $$y(0) = 0$$, then the value of y(2) is _______________.