1
JEE Main 2016 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If   f(x) is a differentiable function in the interval (0, $$\infty $$) such that f (1) = 1 and

$$\mathop {\lim }\limits_{t \to x} $$   $${{{t^2}f\left( x \right) - {x^2}f\left( t \right)} \over {t - x}} = 1,$$ for each x > 0, then $$f\left( {{\raise0.5ex\hbox{$\scriptstyle 3$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}} \right)$$ equal to :
A
$${{13} \over 6}$$
B
$${{23} \over 18}$$
C
$${{25} \over 9}$$
D
$${{31} \over 18}$$
2
JEE Main 2016 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
If a curve $$y=f(x)$$ passes through the point $$(1,-1)$$ and satisfies the differential equation, $$y(1+xy) dx=x$$ $$dy$$, then $$f\left( { - {1 \over 2}} \right)$$ is equal to :
A
$${2 \over 5}$$
B
$${4 \over 5}$$
C
$$-{2 \over 5}$$
D
$$-{4 \over 5}$$
3
JEE Main 2015 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$y(x)$$ be the solution of the differential equation

$$\left( {x\,\log x} \right){{dy} \over {dx}} + y = 2x\,\log x,\left( {x \ge 1} \right).$$ Then $$y(e)$$ is equal to :
A
$$2$$
B
$$2e$$
C
$$e$$
D
$$0$$
4
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
Let the population of rabbits surviving at time $$t$$ be governed by the differential equation $${{dp\left( t \right)} \over {dt}} = {1 \over 2}p\left( t \right) - 200.$$ If $$p(0)=100,$$ then $$p(t)$$ equals:
A
$$600 - 500\,{e^{t/2}}$$
B
$$400 - 300\,{e^{-t/2}}$$
C
$$400 - 300\,{e^{t/2}}$$
D
$$300 - 200\,{e^{-t/2}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12