Let $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ be the solution curves of the differential equation $$\frac{d y}{d x}=y+7$$ with initial conditions $$y_{1}(0)=0$$ and $$y_{2}(0)=1$$ respectively. Then the curves $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ intersect at
Let $$y=y(x), y > 0$$, be a solution curve of the differential equation $$\left(1+x^{2}\right) \mathrm{d} y=y(x-y) \mathrm{d} x$$. If $$y(0)=1$$ and $$y(2 \sqrt{2})=\beta$$, then
Let $$y=y(x)$$ be the solution of the differential equation $$\frac{d y}{d x}+\frac{5}{x\left(x^{5}+1\right)} y=\frac{\left(x^{5}+1\right)^{2}}{x^{7}}, x > 0$$. If $$y(1)=2$$, then $$y(2)$$ is equal to :
Let $$y=y(x)$$ be a solution curve of the differential equation.
$$\left(1-x^{2} y^{2}\right) d x=y d x+x d y$$.
If the line $$x=1$$ intersects the curve $$y=y(x)$$ at $$y=2$$ and the line $$x=2$$ intersects the curve $$y=y(x)$$ at $$y=\alpha$$, then a value of $$\alpha$$ is :