1
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=f(x)$$ be the solution of the differential equation $$y(x+1)dx-x^2dy=0,y(1)=e$$. Then $$\mathop {\lim }\limits_{x \to {0^ + }} f(x)$$ is equal to

A
$${e^2}$$
B
0
C
$${1 \over {{e^2}}}$$
D
$${1 \over e}$$
2
JEE Main 2023 (Online) 25th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(t)$$ be a solution of the differential equation $${{dy} \over {dt}} + \alpha y = \gamma {e^{ - \beta t}}$$ where, $$\alpha > 0,\beta > 0$$ and $$\gamma > 0$$. Then $$\mathop {\lim }\limits_{t \to \infty } y(t)$$

A
is 0
B
is 1
C
is $$-1$$
D
does not exist
3
JEE Main 2023 (Online) 25th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y = y(x)$$ be the solution curve of the differential equation $${{dy} \over {dx}} = {y \over x}\left( {1 + x{y^2}(1 + {{\log }_e}x)} \right),x > 0,y(1) = 3$$. Then $${{{y^2}(x)} \over 9}$$ is equal to :

A
$${{{x^2}} \over {5 - 2{x^3}(2 + {{\log }_e}{x^3})}}$$
B
$${{{x^2}} \over {3{x^3}(1 + {{\log }_e}{x^2}) - 2}}$$
C
$${{{x^2}} \over {7 - 3{x^3}(2 + {{\log }_e}{x^2})}}$$
D
$${{{x^2}} \over {2{x^3}(2 + {{\log }_e}{x^3}) - 3}}$$
4
JEE Main 2023 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(x)$$ be the solution of the differential equation $$(x^2-3y^2)dx+3xy~dy=0,y(1)=1$$. Then $$6y^2(e)$$ is equal to

A
$$\frac{3}{2}\mathrm{e}^2$$
B
$$3\mathrm{e}^2$$
C
$$\mathrm{e}^2$$
D
$$2\mathrm{e}^2$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12