1
JEE Main 2023 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha x=\exp \left(x^{\beta} y^{\gamma}\right)$$ be the solution of the differential equation $$2 x^{2} y \mathrm{~d} y-\left(1-x y^{2}\right) \mathrm{d} x=0, x > 0,y(2)=\sqrt{\log _{e} 2}$$. Then $$\alpha+\beta-\gamma$$ equals :

A
1
B
0
C
3
D
$$-1$$
2
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The area enclosed by the closed curve $$\mathrm{C}$$ given by the differential equation

$$\frac{d y}{d x}+\frac{x+a}{y-2}=0, y(1)=0$$ is $$4 \pi$$.

Let $$P$$ and $$Q$$ be the points of intersection of the curve $$\mathrm{C}$$ and the $$y$$-axis. If normals at $$P$$ and $$Q$$ on the curve $$\mathrm{C}$$ intersect $$x$$-axis at points $$R$$ and $$S$$ respectively, then the length of the line segment $$R S$$ is :

A
$$\frac{4 \sqrt{3}}{3}$$
B
$$2 \sqrt{3}$$
C
2
D
$$\frac{2 \sqrt{3}}{3}$$
3
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$y=y(x)$$ is the solution curve of the differential equation

$$\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1$$, then $$y\left(\frac{\pi}{6}\right)$$ is equal to

A
$$\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)$$
B
$$\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)$$
C
$$\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)$$
D
$$\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)$$
4
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $y=y(x)$ be the solution of the differential equation

$\left(3 y^{2}-5 x^{2}\right) y \mathrm{~d} x+2 x\left(x^{2}-y^{2}\right) \mathrm{d} y=0$

such that $y(1)=1$. Then $\left|(y(2))^{3}-12 y(2)\right|$ is equal to :
A
64
B
$16 \sqrt{2}$
C
32
D
$32 \sqrt{2}$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12