1
JEE Main 2023 (Online) 1st February Evening Shift
+4
-1 Let $$\alpha x=\exp \left(x^{\beta} y^{\gamma}\right)$$ be the solution of the differential equation $$2 x^{2} y \mathrm{~d} y-\left(1-x y^{2}\right) \mathrm{d} x=0, x > 0,y(2)=\sqrt{\log _{e} 2}$$. Then $$\alpha+\beta-\gamma$$ equals :

A
1
B
0
C
3
D
$$-1$$
2
JEE Main 2023 (Online) 1st February Morning Shift
+4
-1 The area enclosed by the closed curve $$\mathrm{C}$$ given by the differential equation

$$\frac{d y}{d x}+\frac{x+a}{y-2}=0, y(1)=0$$ is $$4 \pi$$.

Let $$P$$ and $$Q$$ be the points of intersection of the curve $$\mathrm{C}$$ and the $$y$$-axis. If normals at $$P$$ and $$Q$$ on the curve $$\mathrm{C}$$ intersect $$x$$-axis at points $$R$$ and $$S$$ respectively, then the length of the line segment $$R S$$ is :

A
$$\frac{4 \sqrt{3}}{3}$$
B
$$2 \sqrt{3}$$
C
2
D
$$\frac{2 \sqrt{3}}{3}$$
3
JEE Main 2023 (Online) 1st February Morning Shift
+4
-1 If $$y=y(x)$$ is the solution curve of the differential equation

$$\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1$$, then $$y\left(\frac{\pi}{6}\right)$$ is equal to

A
$$\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)$$
B
$$\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)$$
C
$$\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)$$
D
$$\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)$$
4
JEE Main 2023 (Online) 31st January Evening Shift
+4
-1 Let $y=y(x)$ be the solution of the differential equation

$\left(3 y^{2}-5 x^{2}\right) y \mathrm{~d} x+2 x\left(x^{2}-y^{2}\right) \mathrm{d} y=0$

such that $y(1)=1$. Then $\left|(y(2))^{3}-12 y(2)\right|$ is equal to :
A
64
B
$16 \sqrt{2}$
C
32
D
$32 \sqrt{2}$
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination