1
JEE Main 2019 (Online) 12th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) be the solution of the differential equation, x$${{dy} \over {dx}}$$ + y = x loge x, (x > 1). If 2y(2) = loge 4 $$-$$ 1, then y(e) is equal to :
A
$$ - {e \over 2}$$
B
$$ - {{{e^2}} \over 2}$$
C
$${{{e^2}} \over 4}$$
D
$${e \over 4}$$
2
JEE Main 2019 (Online) 11th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The solution of the differential equation,

$${{dy} \over {dx}}$$ = (x – y)2, when y(1) = 1, is :
A
$$-$$ loge $$\left| {{{1 + x - y} \over {1 - x + y}}} \right|$$ = x + y $$-$$ 2
B
loge $$\left| {{{2 - x} \over {2 - y}}} \right|$$ = x $$-$$ y
C
loge $$\left| {{{2 - y} \over {2 - x}}} \right|$$ = 2(y $$-$$ 1)
D
$$-$$ loge $$\left| {{{1 - x + y} \over {1 + x - y}}} \right|$$ = 2(x $$-$$ 1)
3
JEE Main 2019 (Online) 11th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If y(x) is the solution of the differential equation $${{dy} \over {dx}} + \left( {{{2x + 1} \over x}} \right)y = {e^{ - 2x}},\,\,x > 0,\,$$ where $$y\left( 1 \right) = {1 \over 2}{e^{ - 2}},$$ then
A
y(loge2) = loge4
B
y(x) is decreasing in (0, 1)
C
y(loge2) = $${{{{\log }_e}2} \over 4}$$
D
y(x) is decreasing in $$\left( {{1 \over 2},1} \right)$$
4
JEE Main 2019 (Online) 10th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f be a differentiable function such that f '(x) = 7 - $${3 \over 4}{{f\left( x \right)} \over x},$$ (x > 0) and f(1) $$ \ne $$ 4. Then $$\mathop {\lim }\limits_{x \to 0'} \,$$ xf$$\left( {{1 \over x}} \right)$$ :
A
does not exist
B
exists and equals $${4 \over 7}$$
C
exists and equals 4
D
exists and equals 0
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12