1
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If y = y(x) is the solution of the differential equation
$${{dy} \over {dx}} = \left( {\tan x - y} \right){\sec ^2}x$$, $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$,
such that y (0) = 0, then $$y\left( { - {\pi \over 4}} \right)$$ is equal to :
A
$${1 \over 2} - e$$
B
$$e - 2$$
C
$$2 + {1 \over e}$$
D
$${1 \over e} - 2$$
2
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\cos x{{dy} \over {dx}} - y\sin x = 6x$$, (0 < x < $${\pi \over 2}$$)
and $$y\left( {{\pi \over 3}} \right)$$ = 0 then $$y\left( {{\pi \over 6}} \right)$$ is equal to :-
A
$$ - {{{\pi ^2}} \over {2 }}$$
B
$$ - {{{\pi ^2}} \over {4\sqrt 3 }}$$
C
$$ {{{\pi ^2}} \over {2\sqrt 3 }}$$
D
$$ - {{{\pi ^2}} \over {2\sqrt 3 }}$$
3
JEE Main 2019 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The solution of the differential equation

$$x{{dy} \over {dx}} + 2y$$ = x2 (x $$ \ne $$ 0) with y(1) = 1, is :
A
$$y = {4 \over 5}{x^3} + {1 \over {5{x^2}}}$$
B
$$y = {3 \over 4}{x^2} + {1 \over {4{x^2}}}$$
C
$$y = {{{x^2}} \over 4} + {3 \over {4{x^2}}}$$
D
$$y = {{{x^3}} \over 5} + {1 \over {5{x^2}}}$$
4
JEE Main 2019 (Online) 8th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) be the solution of the differential equation,

$${({x^2} + 1)^2}{{dy} \over {dx}} + 2x({x^2} + 1)y = 1$$

such that y(0) = 0. If $$\sqrt ay(1)$$ = $$\pi \over 32$$ , then the value of 'a' is :
A
$${1 \over 2}$$
B
$${1 \over 16}$$
C
1
D
$${1 \over 4}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12