1
JEE Main 2018 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) be the solution of the differential equation

$$\sin x{{dy} \over {dx}} + y\cos x = 4x$$, $$x \in \left( {0,\pi } \right)$$.

If $$y\left( {{\pi \over 2}} \right) = 0$$, then $$y\left( {{\pi \over 6}} \right)$$ is equal to :
A
$$ - {4 \over 9}{\pi ^2}$$
B
$${4 \over {9\sqrt 3 }}{\pi ^2}$$
C
$$ - {8 \over {9\sqrt 3 }}{\pi ^2}$$
D
$$ - {8 \over 9}{\pi ^2}$$
2
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The curve satifying the differeial equation, (x2 $$-$$ y2) dx + 2xydy = 0 and passing through the point (1, 1) is :
A
a circle of radius one.
B
a hyperbola.
C
an ellipse.
D
a circle of radius two.
3
JEE Main 2018 (Online) 15th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) be the solution of the differential equation $${{dy} \over {dx}} + 2y = f\left( x \right),$$

where $$f\left( x \right) = \left\{ {\matrix{ {1,} & {x \in \left[ {0,1} \right]} \cr {0,} & {otherwise} \cr } } \right.$$

If y(0) = 0, then $$y\left( {{3 \over 2}} \right)$$ is :
A
$${{{e^2} + 1} \over {2{e^4}}}$$
B
$${1 \over {2e}}$$
C
$${{{e^2} - 1} \over {{e^3}}}$$
D
$${{{e^2} - 1} \over {2{e^3}}}$$
4
JEE Main 2017 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If 2x = y$${^{{1 \over 5}}}$$ + y$${^{ - {1 \over 5}}}$$ and

(x2 $$-$$ 1) $${{{d^2}y} \over {d{x^2}}}$$ + $$\lambda $$x $${{dy} \over {dx}}$$ + ky = 0,

then $$\lambda $$ + k is equal to :
A
$$-$$ 23
B
$$-$$ 24
C
26
D
$$-$$ 26
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12