1
JEE Main 2022 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ be two distinct solutions of the differential equation $$\frac{d y}{d x}=x+y$$, with $$y_{1}(0)=0$$ and $$y_{2}(0)=1$$ respectively. Then, the number of points of intersection of $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ is

A
0
B
1
C
2
D
3
2
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the solution curve $$y=f(x)$$ of the differential equation $$ \frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}$$, $$x\in(-1,1)$$ pass through the origin. Then $$\int\limits_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x $$ is equal to

A
$$\frac{\pi}{3}-\frac{1}{4}$$
B
$$\frac{\pi}{3}-\frac{\sqrt{3}}{4}$$
C
$$\frac{\pi}{6}-\frac{\sqrt{3}}{4}$$
D
$$\frac{\pi}{6}-\frac{\sqrt{3}}{2}$$
3
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $${{dy} \over {dx}} + 2y\tan x = \sin x,\,0 < x < {\pi \over 2}$$ and $$y\left( {{\pi \over 3}} \right) = 0$$, then the maximum value of $$y(x)$$ is :

A
$${1 \over 8}$$
B
$${3 \over 4}$$
C
$${1 \over 4}$$
D
$${3 \over 8}$$
4
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The general solution of the differential equation $$\left(x-y^{2}\right) \mathrm{d} x+y\left(5 x+y^{2}\right) \mathrm{d} y=0$$ is :

A
$$\left(y^{2}+x\right)^{4}=\mathrm{C}\left|\left(y^{2}+2 x\right)^{3}\right|$$
B
$$\left(y^{2}+2 x\right)^{4}=C\left|\left(y^{2}+x\right)^{3}\right|$$
C
$$\left|\left(y^{2}+x\right)^{3}\right|=\mathrm{C}\left(2 y^{2}+x\right)^{4}$$
D
$$\left|\left(y^{2}+2 x\right)^{3}\right|=C\left(2 y^{2}+x\right)^{4}$$
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET