1
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(x)$$ be the solution of the differential equation $$\left(2 x \log _e x\right) \frac{d y}{d x}+2 y=\frac{3}{x} \log _e x, x>0$$ and $$y\left(e^{-1}\right)=0$$. Then, $$y(e)$$ is equal to

A
$$-\frac{3}{\mathrm{e}}$$
B
$$-\frac{3}{2 \mathrm{e}}$$
C
$$-\frac{2}{3 \mathrm{e}}$$
D
$$-\frac{2}{\mathrm{e}}$$
2
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(x)$$ be the solution of the differential equation $$\left(1+x^2\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}$$, $$y(1)=0$$. Then $$y(0)$$ is

A
$$\frac{1}{4}\left(e^{\pi / 2}-1\right)$$
B
$$\frac{1}{2}\left(1-e^{\pi / 2}\right)$$
C
$$\frac{1}{4}\left(1-e^{\pi / 2}\right)$$
D
$$\frac{1}{2}\left(e^{\pi / 2}-1\right)$$
3
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The differential equation of the family of circles passing through the origin and having centre at the line $$y=x$$ is :

A
$$\left(x^2-y^2+2 x y\right) \mathrm{d} x=\left(x^2-y^2+2 x y\right) \mathrm{d} y$$
B
$$\left(x^2+y^2-2 x y\right) \mathrm{d} x=\left(x^2+y^2+2 x y\right) \mathrm{d} y$$
C
$$\left(x^2+y^2+2 x y\right) \mathrm{d} x=\left(x^2+y^2-2 x y\right) \mathrm{d} y$$
D
$$\left(x^2-y^2+2 x y\right) \mathrm{d} x=\left(x^2-y^2-2 x y\right) \mathrm{d} y$$
4
JEE Main 2024 (Online) 5th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$y=y(x)$$ is the solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=\sin (2 x), y(0)=\frac{3}{4}$$, then $$y\left(\frac{\pi}{8}\right)$$ is equal to :

A
$$\mathrm{e}^{-\pi / 8}$$
B
$$\mathrm{e}^{\pi / 4}$$
C
$$\mathrm{e}^{-\pi / 4}$$
D
$$\mathrm{e}^{\pi / 8}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12