1
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let y = y(x) be the solution of the differential equation :

$\cos x\left(\log _e(\cos x)\right)^2 d y+\left(\sin x-3 y \sin x \log _e(\cos x)\right) d x=0$, x ∈ (0, $\frac{\pi}{2}$ ). If $ y(\frac{\pi}{4}) $ = $-\frac{1}{\log_{e}2}$, then $ y(\frac{\pi}{6}) $ is equal to :

A

$\frac{2}{\log_{e}(3)−\log_{e}(4)}$

B

$-\frac{1}{\log_{e}(4)}$

C

$\frac{1}{\log_{e}(4)−\log_{e}(3)}$

D

$\frac{1}{\log_{e}(3)−\log_{e}(4)}$

2
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let for some function $\mathrm{y}=f(x), \int_0^x t f(t) d t=x^2 f(x), x>0$ and $f(2)=3$. Then $f(6)$ is equal to

A
1
B
6
C
2
D
3
3
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $\left(x y-5 x^2 \sqrt{1+x^2}\right) d x+\left(1+x^2\right) d y=0, y(0)=0$. Then $y(\sqrt{3})$ is equal to

A
$\frac{5 \sqrt{3}}{2}$
B
$\sqrt{\frac{15}{2}}$
C
$\sqrt{\frac{14}{3}}$
D
$2 \sqrt{2}$
4
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $x=x(y)$ be the solution of the differential equation $y=\left(x-y \frac{\mathrm{~d} x}{\mathrm{~d} y}\right) \sin \left(\frac{x}{y}\right), y>0$ and $x(1)=\frac{\pi}{2}$. Then $\cos (x(2))$ is equal to :

A
$2\left(\log _e 2\right)-1$
B
$1-2\left(\log _e 2\right)^2$
C
$1-2\left(\log _{\mathrm{e}} 2\right)$
D
$2\left(\log _e 2\right)^2-1$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12