1
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $y=y(x)$ be the solution of the differential equation

$\frac{d y}{d x}+3\left(\tan ^2 x\right) y+3 y=\sec ^2 x, y(0)=\frac{1}{3}+e^3$. Then $y\left(\frac{\pi}{4}\right)$ is equal to :

A
$\frac{4}{3}$
B
$\frac{2}{3}+e^3$
C
$\frac{4}{3}+e^3$
D
$\frac{2}{3}$
2
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $g$ be a differentiable function such that $\int_0^x g(t) d t=x-\int_0^x \operatorname{tg}(t) d t, x \geq 0$ and let $y=y(x)$ satisfy the differential equation $\frac{d y}{d x}-y \tan x=2(x+1) \sec x g(x), x \in\left[0, \frac{\pi}{2}\right)$. If $y(0)=0$, then $y\left(\frac{\pi}{3}\right)$ is equal to
A
$\frac{4 \pi}{3}$
B
$\frac{2 \pi}{3}$
C
$\frac{2 \pi}{3 \sqrt{3}}$
D
$\frac{4 \pi}{3 \sqrt{3}}$
3
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If for the solution curve $y=f(x)$ of the differential equation $\frac{d y}{d x}+(\tan x) y=\frac{2+\sec x}{(1+2 \sec x)^2}$, $x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right), f\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{10}$, then $f\left(\frac{\pi}{4}\right)$ is equal to:

A
$\frac{5-\sqrt{3}}{2 \sqrt{2}}$
B

$\frac{4 - \sqrt{2}}{14}$

C

$\frac{9\sqrt{3} + 3}{10(4 + \sqrt{3})}$

D

$\frac{\sqrt{3} + 1}{10(4 + \sqrt{3})}$

4
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let y = y(x) be the solution of the differential equation :

$\cos x\left(\log _e(\cos x)\right)^2 d y+\left(\sin x-3 y \sin x \log _e(\cos x)\right) d x=0$, x ∈ (0, $\frac{\pi}{2}$ ). If $ y(\frac{\pi}{4}) $ = $-\frac{1}{\log_{e}2}$, then $ y(\frac{\pi}{6}) $ is equal to :

A

$\frac{2}{\log_{e}(3)−\log_{e}(4)}$

B

$-\frac{1}{\log_{e}(4)}$

C

$\frac{1}{\log_{e}(4)−\log_{e}(3)}$

D

$\frac{1}{\log_{e}(3)−\log_{e}(4)}$

JEE Main Subjects
EXAM MAP