1
JEE Main 2023 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(x)$$ be the solution of the differential equation $$(x^2-3y^2)dx+3xy~dy=0,y(1)=1$$. Then $$6y^2(e)$$ is equal to

A
$$\frac{3}{2}\mathrm{e}^2$$
B
$$3\mathrm{e}^2$$
C
$$\mathrm{e}^2$$
D
$$2\mathrm{e}^2$$
2
JEE Main 2023 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y = y(x)$$ be the solution of the differential equation $${x^3}dy + (xy - 1)dx = 0,x > 0,y\left( {{1 \over 2}} \right) = 3 - \mathrm{e}$$. Then y (1) is equal to

A
2 $$-$$ e
B
3
C
1
D
e
3
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the solution curve of the differential equation $$\frac{d y}{d x}=\frac{x+y-2}{x-y}$$ passes through the points $$(2,1)$$ and $$(\mathrm{k}+1,2), \mathrm{k}>0$$, then

A
$$2 \tan ^{-1}\left(\frac{1}{k}\right)=\log _{e}\left(k^{2}+1\right)$$
B
$$\tan ^{-1}\left(\frac{1}{k}\right)=\log _{e}\left(k^{2}+1\right)$$
C
$$2 \tan ^{-1}\left(\frac{1}{k+1}\right)=\log _{e}\left(k^{2}+2 k+2\right)$$
D
$$2 \tan ^{-1}\left(\frac{1}{k}\right)=\log _{e}\left(\frac{k^{2}+1}{k^{2}}\right)$$
4
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(x)$$ be the solution curve of the differential equation $$ \frac{d y}{d x}+\left(\frac{2 x^{2}+11 x+13}{x^{3}+6 x^{2}+11 x+6}\right) y=\frac{(x+3)}{x+1}, x>-1$$, which passes through the point $$(0,1)$$. Then $$y(1)$$ is equal to :

A
$$\frac{1}{2}$$
B
$$\frac{3}{2}$$
C
$$\frac{5}{2}$$
D
$$\frac{7}{2}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12