1
JEE Main 2021 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) be the solution of the differential

equation xdy = (y + x3 cosx)dx with y($$\pi$$) = 0, then $$y\left( {{\pi \over 2}} \right)$$ is equal to :
A
$${{{\pi ^2}} \over 4} + {\pi \over 2}$$
B
$${{{\pi ^2}} \over 2} + {\pi \over 4}$$
C
$${{{\pi ^2}} \over 2} - {\pi \over 4}$$
D
$${{{\pi ^4}} \over 4} - {\pi \over 2}$$
2
JEE Main 2021 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) be the solution of the differential equation $${{dy} \over {dx}} = 1 + x{e^{y - x}}, - \sqrt 2 < x < \sqrt 2 ,y(0) = 0$$

then, the minimum value of $$y(x),x \in \left( { - \sqrt 2 ,\sqrt 2 } \right)$$ is equal to :
A
$$\left( {2 - \sqrt 3 } \right) - {\log _e}2$$
B
$$\left( {2 + \sqrt 3 } \right) + {\log _e}2$$
C
$$\left( {1 + \sqrt 3 } \right) - {\log _e}\left( {\sqrt 3 - 1} \right)$$
D
$$\left( {1 - \sqrt 3 } \right) - {\log _e}\left( {\sqrt 3 - 1} \right)$$
3
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) be the solution of the differential equation $$\cos e{c^2}xdy + 2dx = (1 + y\cos 2x)\cos e{c^2}xdx$$, with $$y\left( {{\pi \over 4}} \right) = 0$$. Then, the value of $${(y(0) + 1)^2}$$ is equal to :
A
e1/2
B
e$$-$$1/2
C
e$$-$$1
D
e
4
JEE Main 2021 (Online) 20th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) satisfies the equation $${{dy} \over {dx}} - |A| = 0$$, for all x > 0, where $$A = \left[ {\matrix{ y & {\sin x} & 1 \cr 0 & { - 1} & 1 \cr 2 & 0 & {{1 \over x}} \cr } } \right]$$. If $$y(\pi ) = \pi + 2$$, then the value of $$y\left( {{\pi \over 2}} \right)$$ is :
A
$${\pi \over 2} + {4 \over \pi }$$
B
$${\pi \over 2} - {1 \over \pi }$$
C
$${{3\pi } \over 2} - {1 \over \pi }$$
D
$${\pi \over 2} - {4 \over \pi }$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12