The solution curve of the differential equation $$y \frac{d x}{d y}=x\left(\log _e x-\log _e y+1\right), x>0, y>0$$ passing through the point $$(e, 1)$$ is
Let $$y=y(x)$$ be the solution of the differential equation $$\sec x \mathrm{~d} y+\{2(1-x) \tan x+x(2-x)\} \mathrm{d} x=0$$ such that $$y(0)=2$$. Then $$y(2)$$ is equal to:
If $$\sin \left(\frac{y}{x}\right)=\log _e|x|+\frac{\alpha}{2}$$ is the solution of the differential equation $$x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$$ and $$y(1)=\frac{\pi}{3}$$, then $$\alpha^2$$ is equal to
A function $$y=f(x)$$ satisfies $$f(x) \sin 2 x+\sin x-\left(1+\cos ^2 x\right) f^{\prime}(x)=0$$ with condition $$f(0)=0$$. Then, $$f\left(\frac{\pi}{2}\right)$$ is equal to