1
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The solution curve of the differential equation $$y \frac{d x}{d y}=x\left(\log _e x-\log _e y+1\right), x>0, y>0$$ passing through the point $$(e, 1)$$ is

A
$$\left|\log _e \frac{y}{x}\right|=y^2$$
B
$$\left|\log _e \frac{y}{x}\right|=x$$
C
$$\left|\log _e \frac{x}{y}\right|=y$$
D
$$2\left|\log _e \frac{x}{y}\right|=y+1$$
2
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(x)$$ be the solution of the differential equation $$\sec x \mathrm{~d} y+\{2(1-x) \tan x+x(2-x)\} \mathrm{d} x=0$$ such that $$y(0)=2$$. Then $$y(2)$$ is equal to:

A
$$2\{\sin (2)+1\}$$
B
2
C
1
D
$$2\{1-\sin (2)\}$$
3
JEE Main 2024 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\sin \left(\frac{y}{x}\right)=\log _e|x|+\frac{\alpha}{2}$$ is the solution of the differential equation $$x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$$ and $$y(1)=\frac{\pi}{3}$$, then $$\alpha^2$$ is equal to

A
12
B
9
C
4
D
3
4
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A function $$y=f(x)$$ satisfies $$f(x) \sin 2 x+\sin x-\left(1+\cos ^2 x\right) f^{\prime}(x)=0$$ with condition $$f(0)=0$$. Then, $$f\left(\frac{\pi}{2}\right)$$ is equal to

A
2
B
1
C
$$-$$1
D
0
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12