The solution curve, of the differential equation $$2 y \frac{\mathrm{d} y}{\mathrm{~d} x}+3=5 \frac{\mathrm{d} y}{\mathrm{~d} x}$$, passing through the point $$(0,1)$$ is a conic, whose vertex lies on the line :
Let $$y=y(x)$$ be the solution curve of the differential equation $$\sec y \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x \sin y=x^3 \cos y, y(1)=0$$. Then $$y(\sqrt{3})$$ is equal to:
Let $$f(x)$$ be a positive function such that the area bounded by $$y=f(x), y=0$$ from $$x=0$$ to $$x=a>0$$ is $$e^{-a}+4 a^2+a-1$$. Then the differential equation, whose general solution is $$y=c_1 f(x)+c_2$$, where $$c_1$$ and $$c_2$$ are arbitrary constants, is
Let $$y=y(x)$$ be the solution of the differential equation $$(1+y^2) e^{\tan x} d x+\cos ^2 x(1+e^{2 \tan x}) d y=0, y(0)=1$$. Then $$y\left(\frac{\pi}{4}\right)$$ is equal to