Let the line $$L: \frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{1}$$ intersect the plane $$2 x+y+3 z=16$$ at the point $$P$$. Let the point $$Q$$ be the foot of perpendicular from the point $$R(1,-1,-3)$$ on the line $$L$$. If $$\alpha$$ is the area of triangle $$P Q R$$, then $$\alpha^{2}$$ is equal to __________.
Let $$\theta$$ be the angle between the planes $$P_{1}: \vec{r} \cdot(\hat{i}+\hat{j}+2 \hat{k})=9$$ and $$P_{2}: \vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=15$$. Let $$\mathrm{L}$$ be the line that meets $$P_{2}$$ at the point $$(4,-2,5)$$ and makes an angle $$\theta$$ with the normal of $$P_{2}$$. If $$\alpha$$ is the angle between $$\mathrm{L}$$ and $$P_{2}$$, then $$\left(\tan ^{2} \theta\right)\left(\cot ^{2} \alpha\right)$$ is equal to ____________.
If the equation of the plane passing through the point $$(1,1,2)$$ and perpendicular to the line $$x-3 y+ 2 z-1=0=4 x-y+z$$ is $$\mathrm{A} x+\mathrm{B} y+\mathrm{C} z=1$$, then $$140(\mathrm{C}-\mathrm{B}+\mathrm{A})$$ is equal to ___________.