Let $$\lambda_{1}, \lambda_{2}$$ be the values of $$\lambda$$ for which the points $$\left(\frac{5}{2}, 1, \lambda\right)$$ and $$(-2,0,1)$$ are at equal distance from the plane $$2 x+3 y-6 z+7=0$$. If $$\lambda_{1} > \lambda_{2}$$, then the distance of the point $$\left(\lambda_{1}-\lambda_{2}, \lambda_{2}, \lambda_{1}\right)$$ from the line $$\frac{x-5}{1}=\frac{y-1}{2}=\frac{z+7}{2}$$ is ____________.
If the lines $$\frac{x-1}{2}=\frac{2-y}{-3}=\frac{z-3}{\alpha}$$ and $$\frac{x-4}{5}=\frac{y-1}{2}=\frac{z}{\beta}$$ intersect, then the magnitude of the minimum value of $$8 \alpha \beta$$ is _____________.
Let the image of the point $$\mathrm{P}(1,2,3)$$ in the plane $$2 x-y+z=9$$ be $$\mathrm{Q}$$. If the coordinates of the point $$\mathrm{R}$$ are $$(6,10,7)$$, then the square of the area of the triangle $$\mathrm{PQR}$$ is _____________.
The point of intersection $$\mathrm{C}$$ of the plane $$8 x+y+2 z=0$$ and the line joining the points $$\mathrm{A}(-3,-6,1)$$ and $$\mathrm{B}(2,4,-3)$$ divides the line segment $$\mathrm{AB}$$ internally in the ratio $$\mathrm{k}: 1$$. If $$\mathrm{a}, \mathrm{b}, \mathrm{c}(|\mathrm{a}|,|\mathrm{b}|,|\mathrm{c}|$$ are coprime) are the direction ratios of the perpendicular from the point $$\mathrm{C}$$ on the line $$\frac{1-x}{1}=\frac{y+4}{2}=\frac{z+2}{3}$$, then $$|\mathrm{a}+\mathrm{b}+\mathrm{c}|$$ is equal to ___________.