Let P be the image of the point $\mathrm{Q}(7,-2,5)$ in the line $\mathrm{L}: \frac{x-1}{2}=\frac{y+1}{3}=\frac{z}{4}$ and $\mathrm{R}(5, \mathrm{p}, \mathrm{q})$ be a point on $L$. Then the square of the area of $\triangle P Q R$ is _________.
Let $\mathrm{L}_1: \frac{x-1}{3}=\frac{y-1}{-1}=\frac{z+1}{0}$ and $\mathrm{L}_2: \frac{x-2}{2}=\frac{y}{0}=\frac{z+4}{\alpha}, \alpha \in \mathbf{R}$, be two lines, which intersect at the point $B$. If $P$ is the foot of perpendicular from the point $A(1,1,-1)$ on $L_2$, then the value of $26 \alpha(\mathrm{~PB})^2$ is _________ .
The square of the distance of the image of the point $$(6,1,5)$$ in the line $$\frac{x-1}{3}=\frac{y}{2}=\frac{z-2}{4}$$, from the origin is __________.
Let $$\mathrm{P}(\alpha, \beta, \gamma)$$ be the image of the point $$\mathrm{Q}(1,6,4)$$ in the line $$\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$$. Then $$2 \alpha+\beta+\gamma$$ is equal to ________