Javascript is required
1
JEE Main 2021 (Online) 17th March Morning Shift
Numerical
+4
-1
If the equation of the plane passing through the line of intersection of the planes 2x $$-$$ 7y + 4z $$-$$ 3 = 0, 3x $$-$$ 5y + 4z + 11 = 0 and the point ($$-$$2, 1, 3) is ax + by + cz $$-$$ 7 = 0, then the value of 2a + b + c $$-$$ 7 is ____________.
2
JEE Main 2021 (Online) 17th March Morning Shift
Numerical
+4
-1
If $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + 3\widehat k$$,

$$\overrightarrow b = - \beta \widehat i - \alpha \widehat j - \widehat k$$ and

$$\overrightarrow c = \widehat i - 2\widehat j - \widehat k$$

such that $$\overrightarrow a \,.\,\overrightarrow b = 1$$ and $$\overrightarrow b \,.\,\overrightarrow c = - 3$$, then $${1 \over 3}\left( {\left( {\overrightarrow a \times \overrightarrow b } \right)\,.\,\overrightarrow c } \right)$$ is equal to _____________.
3
JEE Main 2021 (Online) 16th March Evening Shift
Numerical
+4
-1
If the distance of the point (1, $$-$$2, 3) from the plane x + 2y $$-$$ 3z + 10 = 0 measured parallel to the line, $${{x - 1} \over 3} = {{2 - y} \over m} = {{z + 3} \over 1}$$ is $$\sqrt {{7 \over 2}}$$, then the value of |m| is equal to _________.
Let $$\overrightarrow c$$ be a vector perpendicular to the vectors, $$\overrightarrow a$$ = $$\widehat i$$ + $$\widehat j$$ $$-$$ $$\widehat k$$ and
$$\overrightarrow b$$ = $$\widehat i$$ + 2$$\widehat j$$ + $$\widehat k$$. If $$\overrightarrow c \,.\,\left( {\widehat i + \widehat j + 3\widehat k} \right)$$ = 8 then the value of
$$\overrightarrow c$$ . $$\left( {\overrightarrow a \times \overrightarrow b } \right)$$ is equal to __________.