The lines $$\frac{x-2}{2}=\frac{y}{-2}=\frac{z-7}{16}$$ and $$\frac{x+3}{4}=\frac{y+2}{3}=\frac{z+2}{1}$$ intersect at the point $$P$$. If the distance of $$\mathrm{P}$$ from the line $$\frac{x+1}{2}=\frac{y-1}{3}=\frac{z-1}{1}$$ is $$l$$, then $$14 l^2$$ is equal to __________.
parallel to the line $\frac{x+2}{2}=\frac{3-y}{-4}=\frac{z-7}{5}$. Then the distance of the point
$\mathrm{A}(8,-1,-19)$ from the plane $\mathrm{P}$ measured parallel to the line $\frac{x}{-3}=\frac{y-5}{4}=\frac{2-z}{-12}$
is equal to ______________.
Let the image of the point $$\left(\frac{5}{3}, \frac{5}{3}, \frac{8}{3}\right)$$ in the plane $$x-2 y+z-2=0$$ be P. If the distance of the point $$Q(6,-2, \alpha), \alpha > 0$$, from $$\mathrm{P}$$ is 13 , then $$\alpha$$ is equal to ___________.
Let the plane $$x+3 y-2 z+6=0$$ meet the co-ordinate axes at the points A, B, C. If the orthocenter of the triangle $$\mathrm{ABC}$$ is $$\left(\alpha, \beta, \frac{6}{7}\right)$$, then $$98(\alpha+\beta)^{2}$$ is equal to ___________.