1
JEE Main 2024 (Online) 31st January Evening Shift
Numerical
+4
-1
Change Language

A line passes through $$A(4,-6,-2)$$ and $$B(16,-2,4)$$. The point $$P(a, b, c)$$, where $$a, b, c$$ are non-negative integers, on the line $$A B$$ lies at a distance of 21 units, from the point $$A$$. The distance between the points $$P(a, b, c)$$ and $$Q(4,-12,3)$$ is equal to __________.

Your input ____
2
JEE Main 2024 (Online) 31st January Morning Shift
Numerical
+4
-1
Change Language

Let $$\mathrm{Q}$$ and $$\mathrm{R}$$ be the feet of perpendiculars from the point $$\mathrm{P}(a, a, a)$$ on the lines $$x=y, z=1$$ and $$x=-y, z=-1$$ respectively. If $$\angle \mathrm{QPR}$$ is a right angle, then $$12 a^2$$ is equal to _________.

Your input ____
3
JEE Main 2024 (Online) 30th January Evening Shift
Numerical
+4
-1
Change Language

Let a line passing through the point $$(-1,2,3)$$ intersect the lines $$L_1: \frac{x-1}{3}=\frac{y-2}{2}=\frac{z+1}{-2}$$ at $$M(\alpha, \beta, \gamma)$$ and $$L_2: \frac{x+2}{-3}=\frac{y-2}{-2}=\frac{z-1}{4}$$ at $$N(a, b, c)$$. Then, the value of $$\frac{(\alpha+\beta+\gamma)^2}{(a+b+c)^2}$$ equals __________.

Your input ____
4
JEE Main 2024 (Online) 30th January Morning Shift
Numerical
+4
-1
Change Language

If $$\mathrm{d}_1$$ is the shortest distance between the lines $$x+1=2 y=-12 z, x=y+2=6 z-6$$ and $$\mathrm{d}_2$$ is the shortest distance between the lines $$\frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5}, \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3}$$, then the value of $$\frac{32 \sqrt{3} \mathrm{~d}_1}{\mathrm{~d}_2}$$ is :

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12