Let $$\mathrm{P}(-2,-1,1)$$ and $$\mathrm{Q}\left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$$ be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are $$\alpha,-1, \beta$$, where both $$\alpha$$ and $$\beta$$ are integers of minimum absolute values, then $$\alpha^{2}+\beta^{2}$$ is equal to ____________.

Let the line $$\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z-3}{-4}$$ intersect the plane containing the lines $$\frac{x-4}{1}=\frac{y+1}{-2}=\frac{z}{1}$$ and $$4 a x-y+5 z-7 a=0=2 x-5 y-z-3, a \in \mathbb{R}$$ at the point $$P(\alpha, \beta, \gamma)$$. Then the value of $$\alpha+\beta+\gamma$$ equals _____________.

The largest value of $$a$$, for which the perpendicular distance of the plane containing the lines $$ \vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}+a \hat{j}-\hat{k})$$ and $$\vec{r}=(\hat{i}+\hat{j})+\mu(-\hat{i}+\hat{j}-a \hat{k})$$ from the point $$(2,1,4)$$ is $$\sqrt{3}$$, is _________.

The plane passing through the line $$L: l x-y+3(1-l) z=1, x+2 y-z=2$$ and perpendicular to the plane $$3 x+2 y+z=6$$ is $$3 x-8 y+7 z=4$$. If $$\theta$$ is the acute angle between the line $$L$$ and the $$y$$-axis, then $$415 \cos ^{2} \theta$$ is equal to _____________.