Consider a line $$\mathrm{L}$$ passing through the points $$\mathrm{P}(1,2,1)$$ and $$\mathrm{Q}(2,1,-1)$$. If the mirror image of the point $$\mathrm{A}(2,2,2)$$ in the line $$\mathrm{L}$$ is $$(\alpha, \beta, \gamma)$$, then $$\alpha+\beta+6 \gamma$$ is equal to __________.
$$ \begin{aligned} & \mathrm{L}_1: \overrightarrow{\mathrm{r}}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\\\ & \mathrm{L}_2: \overrightarrow{\mathrm{r}}=(4 \hat{i}+5 \hat{j}+6 \hat{k})+\mu(\hat{i}+\hat{j}-\hat{k}) \end{aligned} $$
intersect $\mathrm{L}_1$ and $\mathrm{L}_2$ at $\mathrm{P}$ and $\mathrm{Q}$ respectively. If $(\alpha, \beta, \gamma)$ is the mid point of the line segment $\mathrm{PQ}$, then $2(\alpha+\beta+\gamma)$ is equal to ____________.
A line passes through $$A(4,-6,-2)$$ and $$B(16,-2,4)$$. The point $$P(a, b, c)$$, where $$a, b, c$$ are non-negative integers, on the line $$A B$$ lies at a distance of 21 units, from the point $$A$$. The distance between the points $$P(a, b, c)$$ and $$Q(4,-12,3)$$ is equal to __________.
Let $$\mathrm{Q}$$ and $$\mathrm{R}$$ be the feet of perpendiculars from the point $$\mathrm{P}(a, a, a)$$ on the lines $$x=y, z=1$$ and $$x=-y, z=-1$$ respectively. If $$\angle \mathrm{QPR}$$ is a right angle, then $$12 a^2$$ is equal to _________.