The shortest distance between the lines $${{x - 2} \over 3} = {{y + 1} \over 2} = {{z - 6} \over 2}$$ and $${{x - 6} \over 3} = {{1 - y} \over 2} = {{z + 8} \over 0}$$ is equal to ________
Let a line with direction ratios $$a,-4 a,-7$$ be perpendicular to the lines with direction ratios $$3,-1,2 b$$ and $$b, a,-2$$. If the point of intersection of the line $$\frac{x+1}{a^{2}+b^{2}}=\frac{y-2}{a^{2}-b^{2}}=\frac{z}{1}$$ and the plane $$x-y+z=0$$ is $$(\alpha, \beta, \gamma)$$, then $$\alpha+\beta+\gamma$$ is equal to _________.
Let $$\mathrm{P}(-2,-1,1)$$ and $$\mathrm{Q}\left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$$ be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are $$\alpha,-1, \beta$$, where both $$\alpha$$ and $$\beta$$ are integers of minimum absolute values, then $$\alpha^{2}+\beta^{2}$$ is equal to ____________.
Let the line $$\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z-3}{-4}$$ intersect the plane containing the lines $$\frac{x-4}{1}=\frac{y+1}{-2}=\frac{z}{1}$$ and $$4 a x-y+5 z-7 a=0=2 x-5 y-z-3, a \in \mathbb{R}$$ at the point $$P(\alpha, \beta, \gamma)$$. Then the value of $$\alpha+\beta+\gamma$$ equals _____________.