Let the image of the point $$\mathrm{P}(1,2,3)$$ in the plane $$2 x-y+z=9$$ be $$\mathrm{Q}$$. If the coordinates of the point $$\mathrm{R}$$ are $$(6,10,7)$$, then the square of the area of the triangle $$\mathrm{PQR}$$ is _____________.
The point of intersection $$\mathrm{C}$$ of the plane $$8 x+y+2 z=0$$ and the line joining the points $$\mathrm{A}(-3,-6,1)$$ and $$\mathrm{B}(2,4,-3)$$ divides the line segment $$\mathrm{AB}$$ internally in the ratio $$\mathrm{k}: 1$$. If $$\mathrm{a}, \mathrm{b}, \mathrm{c}(|\mathrm{a}|,|\mathrm{b}|,|\mathrm{c}|$$ are coprime) are the direction ratios of the perpendicular from the point $$\mathrm{C}$$ on the line $$\frac{1-x}{1}=\frac{y+4}{2}=\frac{z+2}{3}$$, then $$|\mathrm{a}+\mathrm{b}+\mathrm{c}|$$ is equal to ___________.
Let $$\alpha x+\beta y+\gamma z=1$$ be the equation of a plane passing through the point $$(3,-2,5)$$ and perpendicular to the line joining the points $$(1,2,3)$$ and $$(-2,3,5)$$. Then the value of $$\alpha \beta y$$ is equal to _____________.
Let the line $$L: \frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{1}$$ intersect the plane $$2 x+y+3 z=16$$ at the point $$P$$. Let the point $$Q$$ be the foot of perpendicular from the point $$R(1,-1,-3)$$ on the line $$L$$. If $$\alpha$$ is the area of triangle $$P Q R$$, then $$\alpha^{2}$$ is equal to __________.