Let $$\mathrm{Q}$$ and $$\mathrm{R}$$ be two points on the line $$\frac{x+1}{2}=\frac{y+2}{3}=\frac{z-1}{2}$$ at a distance $$\sqrt{26}$$ from the point $$P(4,2,7)$$. Then the square of the area of the triangle $$P Q R$$ is ___________.
The line of shortest distance between the lines $$\frac{x-2}{0}=\frac{y-1}{1}=\frac{z}{1}$$ and $$\frac{x-3}{2}=\frac{y-5}{2}=\frac{z-1}{1}$$ makes an angle of $$\cos ^{-1}\left(\sqrt{\frac{2}{27}}\right)$$ with the plane $$\mathrm{P}: \mathrm{a} x-y-z=0$$, $$(a>0)$$. If the image of the point $$(1,1,-5)$$ in the plane $$P$$ is $$(\alpha, \beta, \gamma)$$, then $$\alpha+\beta-\gamma$$ is equal to _________________.
Consider a triangle ABC whose vertices are A(0, $$\alpha$$, $$\alpha$$), B($$\alpha$$, 0, $$\alpha$$) and C($$\alpha$$, $$\alpha$$, 0), $$\alpha$$ > 0. Let D be a point moving on the line x + z $$-$$ 3 = 0 = y and G be the centroid of $$\Delta$$ABC. If the minimum length of GD is $$\sqrt {{{57} \over 2}} $$, then $$\alpha$$ is equal to ____________.
Let d be the distance between the foot of perpendiculars of the points P(1, 2, $$-$$1) and Q(2, $$-$$1, 3) on the plane $$-$$x + y + z = 1. Then d2 is equal to ___________.