1
JEE Main 2021 (Online) 24th February Evening Shift
Numerical
+4
-1
Change Language
Let $$\lambda$$ be an integer. If the shortest distance between the lines

x $$-$$ $$\lambda$$ = 2y $$-$$ 1 = $$-$$2z and x = y + 2$$\lambda$$ = z $$-$$ $$\lambda$$ is $${{\sqrt 7 } \over {2\sqrt 2 }}$$, then the value of | $$\lambda$$ | is _________.
Your input ____
2
JEE Main 2020 (Online) 4th September Morning Slot
Numerical
+4
-0
Out of Syllabus
Change Language
If the equation of a plane P, passing through the intersection of the planes,
x + 4y - z + 7 = 0 and 3x + y + 5z = 8 is ax + by + 6z = 15 for some a, b $$ \in $$ R, then the distance of the point (3, 2, -1) from the plane P is...........
Your input ____
3
JEE Main 2020 (Online) 3rd September Evening Slot
Numerical
+4
-0
Out of Syllabus
Change Language
Let a plane P contain two lines
$$\overrightarrow r = \widehat i + \lambda \left( {\widehat i + \widehat j} \right)$$, $$\lambda \in R$$ and
$$\overrightarrow r = - \widehat j + \mu \left( {\widehat j - \widehat k} \right)$$, $$\mu \in R$$
If Q($$\alpha $$, $$\beta $$, $$\gamma $$) is the foot of the perpendicular drawn from the point M(1, 0, 1) to P, then 3($$\alpha $$ + $$\beta $$ + $$\gamma $$) equals _______.
Your input ____
4
JEE Main 2020 (Online) 9th January Evening Slot
Numerical
+4
-0
Out of Syllabus
Change Language
If the distance between the plane, 23x – 10y – 2z + 48 = 0 and the plane

containing the lines $${{x + 1} \over 2} = {{y - 3} \over 4} = {{z + 1} \over 3}$$

and $${{x + 3} \over 2} = {{y + 2} \over 6} = {{z - 1} \over \lambda }\left( {\lambda \in R} \right)$$

is equal to $${k \over {\sqrt {633} }}$$, then k is equal to ______.
Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12