1
JEE Main 2023 (Online) 30th January Evening Shift
Numerical
+4
-1
Change Language
Let a line $L$ pass through the point $P(2,3,1)$ and be parallel to the line $x+3 y-2 z-2=0=x-y+2 z$. If the distance of $L$ from the point $(5,3,8)$ is $\alpha$, then $3 \alpha^2$ is equal to :
Your input ____
2
JEE Main 2023 (Online) 30th January Morning Shift
Numerical
+4
-1
Out of Syllabus
Change Language

If the equation of the plane passing through the point $$(1,1,2)$$ and perpendicular to the line $$x-3 y+ 2 z-1=0=4 x-y+z$$ is $$\mathrm{A} x+\mathrm{B} y+\mathrm{C} z=1$$, then $$140(\mathrm{C}-\mathrm{B}+\mathrm{A})$$ is equal to ___________.

Your input ____
3
JEE Main 2023 (Online) 30th January Morning Shift
Numerical
+4
-1
Out of Syllabus
Change Language

If $$\lambda_{1} < \lambda_{2}$$ are two values of $$\lambda$$ such that the angle between the planes $$P_{1}: \vec{r}(3 \hat{i}-5 \hat{j}+\hat{k})=7$$ and $$P_{2}: \vec{r} \cdot(\lambda \hat{i}+\hat{j}-3 \hat{k})=9$$ is $$\sin ^{-1}\left(\frac{2 \sqrt{6}}{5}\right)$$, then the square of the length of perpendicular from the point $$\left(38 \lambda_{1}, 10 \lambda_{2}, 2\right)$$ to the plane $$P_{1}$$ is ______________.

Your input ____
4
JEE Main 2023 (Online) 29th January Morning Shift
Numerical
+4
-1
Out of Syllabus
Change Language

Let the equation of the plane P containing the line $$x+10=\frac{8-y}{2}=z$$ be $$ax+by+3z=2(a+b)$$ and the distance of the plane $$P$$ from the point (1, 27, 7) be $$c$$. Then $$a^2+b^2+c^2$$ is equal to __________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12