Javascript is required
1
JEE Main 2021 (Online) 20th July Morning Shift
Numerical
+4
-1
Let P be a plane passing through the points (1, 0, 1), (1, $$-$$2, 1) and (0, 1, $$-$$2). Let a vector $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + \gamma \widehat k$$ be such that $$\overrightarrow a $$ is parallel to the plane P, perpendicular to $$(\widehat i + 2\widehat j + 3\widehat k)$$ and $$\overrightarrow a \,.\,(\widehat i + \widehat j + 2\widehat k) = 2$$, then $${(\alpha - \beta + \gamma )^2}$$ equals ____________.
Your input ____
2
JEE Main 2021 (Online) 20th July Morning Shift
Numerical
+4
-1
If the shortest distance between the lines $$\overrightarrow {{r_1}} = \alpha \widehat i + 2\widehat j + 2\widehat k + \lambda (\widehat i - 2\widehat j + 2\widehat k)$$, $$\lambda$$ $$\in$$ R, $$\alpha$$ > 0 and $$\overrightarrow {{r_2}} = - 4\widehat i - \widehat k + \mu (3\widehat i - 2\widehat j - 2\widehat k)$$, $$\mu$$ $$\in$$ R is 9, then $$\alpha$$ is equal to ____________.
Your input ____
3
JEE Main 2021 (Online) 18th March Evening Shift
Numerical
+4
-1
Let the mirror image of the point (1, 3, a) with respect to the plane $$\overrightarrow r .\left( {2\widehat i - \widehat j + \widehat k} \right) - b = 0$$ be ($$-$$3, 5, 2). Then, the value of | a + b | is equal to ____________.
Your input ____
4
JEE Main 2021 (Online) 18th March Evening Shift
Numerical
+4
-1
Let P be a plane containing the line $${{x - 1} \over 3} = {{y + 6} \over 4} = {{z + 5} \over 2}$$ and parallel to the line $${{x - 1} \over 4} = {{y - 2} \over { - 3}} = {{z + 5} \over 7}$$. If the point (1, $$-$$1, $$\alpha$$) lies on the plane P, then the value of |5$$\alpha$$| is equal to ____________.
Your input ____
JEE Main Subjects
© 2023 ExamGOAL