If $$\lambda_{1} < \lambda_{2}$$ are two values of $$\lambda$$ such that the angle between the planes $$P_{1}: \vec{r}(3 \hat{i}-5 \hat{j}+\hat{k})=7$$ and $$P_{2}: \vec{r} \cdot(\lambda \hat{i}+\hat{j}-3 \hat{k})=9$$ is $$\sin ^{-1}\left(\frac{2 \sqrt{6}}{5}\right)$$, then the square of the length of perpendicular from the point $$\left(38 \lambda_{1}, 10 \lambda_{2}, 2\right)$$ to the plane $$P_{1}$$ is ______________.
Let the equation of the plane P containing the line $$x+10=\frac{8-y}{2}=z$$ be $$ax+by+3z=2(a+b)$$ and the distance of the plane $$P$$ from the point (1, 27, 7) be $$c$$. Then $$a^2+b^2+c^2$$ is equal to __________.
Let the co-ordinates of one vertex of $$\Delta ABC$$ be $$A(0,2,\alpha)$$ and the other two vertices lie on the line $${{x + \alpha } \over 5} = {{y - 1} \over 2} = {{z + 4} \over 3}$$. For $$\alpha \in \mathbb{Z}$$, if the area of $$\Delta ABC$$ is 21 sq. units and the line segment $$BC$$ has length $$2\sqrt{21}$$ units, then $$\alpha^2$$ is equal to ___________.
If the shortest distance between the line joining the points (1, 2, 3) and (2, 3, 4), and the line $${{x - 1} \over 2} = {{y + 1} \over { - 1}} = {{z - 2} \over 0}$$ is $$\alpha$$, then 28$$\alpha^2$$ is equal to ____________.