Let $$P$$ be the point $$(10,-2,-1)$$ and $$Q$$ be the foot of the perpendicular drawn from the point $$R(1,7,6)$$ on the line passing through the points $$(2,-5,11)$$ and $$(-6,7,-5)$$. Then the length of the line segment $$P Q$$ is equal to _________.
Let the point $$(-1, \alpha, \beta)$$ lie on the line of the shortest distance between the lines $$\frac{x+2}{-3}=\frac{y-2}{4}=\frac{z-5}{2}$$ and $$\frac{x+2}{-1}=\frac{y+6}{2}=\frac{z-1}{0}$$. Then $$(\alpha-\beta)^2$$ is equal to _________.
Consider a line $$\mathrm{L}$$ passing through the points $$\mathrm{P}(1,2,1)$$ and $$\mathrm{Q}(2,1,-1)$$. If the mirror image of the point $$\mathrm{A}(2,2,2)$$ in the line $$\mathrm{L}$$ is $$(\alpha, \beta, \gamma)$$, then $$\alpha+\beta+6 \gamma$$ is equal to __________.
$$ \begin{aligned} & \mathrm{L}_1: \overrightarrow{\mathrm{r}}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\\\ & \mathrm{L}_2: \overrightarrow{\mathrm{r}}=(4 \hat{i}+5 \hat{j}+6 \hat{k})+\mu(\hat{i}+\hat{j}-\hat{k}) \end{aligned} $$
intersect $\mathrm{L}_1$ and $\mathrm{L}_2$ at $\mathrm{P}$ and $\mathrm{Q}$ respectively. If $(\alpha, \beta, \gamma)$ is the mid point of the line segment $\mathrm{PQ}$, then $2(\alpha+\beta+\gamma)$ is equal to ____________.