Let a line $$l$$ pass through the origin and be perpendicular to the lines
$$l_{1}: \vec{r}=(\hat{\imath}-11 \hat{\jmath}-7 \hat{k})+\lambda(\hat{i}+2 \hat{\jmath}+3 \hat{k}), \lambda \in \mathbb{R}$$ and
$$l_{2}: \vec{r}=(-\hat{\imath}+\hat{\mathrm{k}})+\mu(2 \hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}}), \mu \in \mathbb{R}$$.
If $$\mathrm{P}$$ is the point of intersection of $$l$$ and $$l_{1}$$, and $$\mathrm{Q}(\propto, \beta, \gamma)$$ is the foot of perpendicular from P on $$l_{2}$$, then $$9(\alpha+\beta+\gamma)$$ is equal to _____________.
Let the foot of perpendicular from the point $$\mathrm{A}(4,3,1)$$ on the plane $$\mathrm{P}: x-y+2 z+3=0$$ be N. If B$$(5, \alpha, \beta), \alpha, \beta \in \mathbb{Z}$$ is a point on plane P such that the area of the triangle ABN is $$3 \sqrt{2}$$, then $$\alpha^{2}+\beta^{2}+\alpha \beta$$ is equal to ___________.
Let $$\mathrm{P}_{1}$$ be the plane $$3 x-y-7 z=11$$ and $$\mathrm{P}_{2}$$ be the plane passing through the points $$(2,-1,0),(2,0,-1)$$, and $$(5,1,1)$$. If the foot of the perpendicular drawn from the point $$(7,4,-1)$$ on the line of intersection of the planes $$P_{1}$$ and $$P_{2}$$ is $$(\alpha, \beta, \gamma)$$, then $$\alpha+\beta+\gamma$$ is equal to ___________.
Let $$\lambda_{1}, \lambda_{2}$$ be the values of $$\lambda$$ for which the points $$\left(\frac{5}{2}, 1, \lambda\right)$$ and $$(-2,0,1)$$ are at equal distance from the plane $$2 x+3 y-6 z+7=0$$. If $$\lambda_{1} > \lambda_{2}$$, then the distance of the point $$\left(\lambda_{1}-\lambda_{2}, \lambda_{2}, \lambda_{1}\right)$$ from the line $$\frac{x-5}{1}=\frac{y-1}{2}=\frac{z+7}{2}$$ is ____________.