1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Locus of centroid of the triangle whose vertices are $$\left( {a\cos t,a\sin t} \right),\left( {b\sin t, - b\cos t} \right)$$ and $$\left( {1,0} \right),$$ where $$t$$ is a parameter, is :
A
$${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
B
$${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
C
$${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
D
$${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
2
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
The pair of lines represented by $$$3a{x^2} + 5xy + \left( {{a^2} - 2} \right){y^2} = 0$$$

are perpendicular to each other for :
A
two values of $$a$$
B
$$\forall \,a$$
C
for one value of $$a$$
D
for no values of $$a$$
3
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
If the pair of lines

$$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$

intersect on the $$y$$-axis then :
A
$$2fgh = b{g^2} + c{h^2}$$
B
$$b{g^2} \ne c{h^2}$$
C
$$abc = 2fgh$$
D
none of these
4
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
Locus of mid point of the portion between the axes of

$$x$$ $$cos$$ $$\alpha + y\,\sin \alpha = p$$ where $$p$$ is constant is :
A
$${x^2} + {y^2} = {4 \over {{p^2}}}$$
B
$${x^2} + {y^2} = 4{p^2}$$
C
$${1 \over {{x^2}}} + {1 \over {{y^2}}} = {2 \over {{p^2}}}$$
D
$${1 \over {{x^2}}} + {1 \over {{y^2}}} = {4 \over {{p^2}}}$$
JEE Main Subjects
EXAM MAP