1
AIEEE 2003
+4
-1
Locus of centroid of the triangle whose vertices are $$\left( {a\cos t,a\sin t} \right),\left( {b\sin t, - b\cos t} \right)$$ and $$\left( {1,0} \right),$$ where $$t$$ is a parameter, is :
A
$${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
B
$${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
C
$${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
D
$${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
2
AIEEE 2003
+4
-1
If the equation of the locus of a point equidistant from the point $$\left( {{a_{1,}}{b_1}} \right)$$ and $$\left( {{a_{2,}}{b_2}} \right)$$ is
$$\left( {{a_1} - {a_2}} \right)x + \left( {{b_1} - {b_2}} \right)y + c = 0$$ , then the value of $$'c'$$ is :
A
$$\sqrt {{a_1}^2 + {b_1}^2 - {a_2}^2 - {b_2}^2}$$
B
$${1 \over 2}\left( {{a_2}^2 + {b_2}^2 - {a_1}^2 - {b_1}^2} \right)$$
C
$${{a_1}^2 - {a_2}^2 + {b_1}^2 - {b_2}^2}$$
D
$${1 \over 2}\left( {{a_1}^2 + {a_2}^2 + {b_1}^2 + {b_2}^2} \right)$$.
3
AIEEE 2002
+4
-1
A triangle with vertices $$\left( {4,0} \right),\left( { - 1, - 1} \right),\left( {3,5} \right)$$ is :
A
isosceles and right angled
B
isosceles but not right angled
C
right angled but not isosceles
D
neither right angled nor isosceles
4
AIEEE 2002
+4
-1
Locus of mid point of the portion between the axes of

$$x$$ $$cos$$ $$\alpha + y\,\sin \alpha = p$$ where $$p$$ is constant is :
A
$${x^2} + {y^2} = {4 \over {{p^2}}}$$
B
$${x^2} + {y^2} = 4{p^2}$$
C
$${1 \over {{x^2}}} + {1 \over {{y^2}}} = {2 \over {{p^2}}}$$
D
$${1 \over {{x^2}}} + {1 \over {{y^2}}} = {4 \over {{p^2}}}$$
EXAM MAP
Medical
NEET