1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Locus of centroid of the triangle whose vertices are $$\left( {a\cos t,a\sin t} \right),\left( {b\sin t, - b\cos t} \right)$$ and $$\left( {1,0} \right),$$ where $$t$$ is a parameter, is
A
$${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
B
$${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
C
$${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
D
$${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $${x_1},{x_2},{x_3}$$ and $${y_1},{y_2},{y_3}$$ are both in G.P. with the same common ratio, then the points $$\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)$$ and $$\left( {{x_3},{y_3}} \right)$$
A
are vertices of a triangle
B
lie on a straight line
C
lie on an ellipse
D
lie on a circle
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If the equation of the locus of a point equidistant from the point $$\left( {{a_{1,}}{b_1}} \right)$$ and $$\left( {{a_{2,}}{b_2}} \right)$$ is
$$\left( {{a_1} - {a_2}} \right)x + \left( {{b_1} - {b_2}} \right)y + c = 0$$ , then the value of $$'c'$$ is :
A
$$\sqrt {{a_1}^2 + {b_1}^2 - {a_2}^2 - {b_2}^2} $$
B
$${1 \over 2}\left( {{a_2}^2 + {b_2}^2 - {a_1}^2 - {b_1}^2} \right)$$
C
$${{a_1}^2 - {a_2}^2 + {b_1}^2 - {b_2}^2}$$
D
$${1 \over 2}\left( {{a_1}^2 + {a_2}^2 + {b_1}^2 + {b_2}^2} \right)$$.
4
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
A triangle with vertices $$\left( {4,0} \right),\left( { - 1, - 1} \right),\left( {3,5} \right)$$ is
A
isosceles and right angled
B
isosceles but not right angled
C
right angled but not isosceles
D
neither right angled nor isosceles
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSAT
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN