1
JEE Main 2021 (Online) 16th March Evening Shift
+4
-1
Let C1 be the curve obtained by the solution of differential equation

$$2xy{{dy} \over {dx}} = {y^2} - {x^2},x > 0$$. Let the curve C2 be the

solution of $${{2xy} \over {{x^2} - {y^2}}} = {{dy} \over {dx}}$$. If both the curves pass through (1, 1), then the area enclosed by the curves C1 and C2 is equal to :
A
$${\pi \over 4}$$ + 1
B
$$\pi$$ + 1
C
$$\pi$$ $$-$$ 1
D
$${\pi \over 2}$$ $$-$$ 1
2
JEE Main 2021 (Online) 16th March Morning Shift
+4
-1
If y = y(x) is the solution of the differential equation,

$${{dy} \over {dx}} + 2y\tan x = \sin x,y\left( {{\pi \over 3}} \right) = 0$$, then the maximum value of the function y(x) over R is equal to:
A
$${1 \over 8}$$
B
8
C
$$-$$$${15 \over 4}$$
D
$${1 \over 2}$$
3
JEE Main 2021 (Online) 26th February Morning Shift
+4
-1
The rate of growth of bacteria in a culture is proportional to the number of bacteria present and the bacteria count is 1000 at initial time t = 0. The number of bacteria is increased by 20% in 2 hours. If the population of bacteria is 2000 after $${k \over {{{\log }_e}\left( {{6 \over 5}} \right)}}$$ hours, then $${\left( {{k \over {{{\log }_e}2}}} \right)^2}$$ is equal to :
A
16
B
8
C
2
D
4
4
JEE Main 2021 (Online) 25th February Morning Shift
+4
-1
If a curve passes through the origin and the slope of the tangent to it at any point (x, y) is $${{{x^2} - 4x + y + 8} \over {x - 2}}$$, then this curve also passes through the point :
A
(4, 4)
B
(5, 5)
C
(5, 4)
D
(4, 5)
EXAM MAP
Medical
NEET