1
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$y{{dy} \over {dx}} = x\left[ {{{{y^2}} \over {{x^2}}} + {{\phi \left( {{{{y^2}} \over {{x^2}}}} \right)} \over {\phi '\left( {{{{y^2}} \over {{x^2}}}} \right)}}} \right]$$, x > 0, $$\phi$$ > 0, and y(1) = $$-$$1, then $$\phi \left( {{{{y^2}} \over 4}} \right)$$ is equal to :
A
4 $$\phi$$ (2)
B
4$$\phi$$ (1)
C
2 $$\phi$$ (1)
D
$$\phi$$ (1)
2
JEE Main 2021 (Online) 31st August Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $${{dy} \over {dx}} = {{{2^{x + y}} - {2^x}} \over {{2^y}}}$$, y(0) = 1, then y(1) is equal to :
A
log2(2 + e)
B
log2(1 + e)
C
log2(2e)
D
log2(1 + e2)
3
JEE Main 2021 (Online) 27th August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
A differential equation representing the family of parabolas with axis parallel to y-axis and whose length of latus rectum is the distance of the point (2, $$-$$3) from the line 3x + 4y = 5, is given by :
A
$$10{{{d^2}y} \over {d{x^2}}} = 11$$
B
$$11{{{d^2}x} \over {d{y^2}}} = 10$$
C
$$10{{{d^2}x} \over {d{y^2}}} = 11$$
D
$$11{{{d^2}y} \over {d{x^2}}} = 10$$
4
JEE Main 2021 (Online) 27th August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the solution curve of the differential equation (2x $$-$$ 10y3)dy + ydx = 0, passes through the points (0, 1) and (2, $$\beta$$), then $$\beta$$ is a root of the equation :
A
y5 $$-$$ 2y $$-$$ 2 = 0
B
2y5 $$-$$ 2y $$-$$ 1 = 0
C
2y5 $$-$$ y2 $$-$$ 2 = 0
D
y5 $$-$$ y2 $$-$$ 1 = 0
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12