1
AIEEE 2004
+4
-1
Out of Syllabus
If one of the lines given by $$6{x^2} - xy + 4c{y^2} = 0$$ is $$3x + 4y = 0,$$ then $$c$$ equals :
A
$$-3$$
B
$$-1$$
C
$$3$$
D
$$1$$
2
AIEEE 2003
+4
-1
A square of side a lies above the $$x$$-axis and has one vertex at the origin. The side passing through the origin makes an angle $$\alpha \left( {0 < \alpha < {\pi \over 4}} \right)$$ with the positive direction of x-axis. The equation of its diagonal not passing through the origin is :
A
$$y\left( {\cos \alpha + \sin \alpha } \right) + x\left( {\cos \alpha - \sin \alpha } \right) = a$$
B
$$y\left( {\cos \alpha - \sin \alpha } \right) - x\left( {\sin \alpha - \cos \alpha } \right) = a$$
C
$$y\left( {\cos \alpha + \sin \alpha } \right) + x\left( {\sin \alpha - \cos \alpha } \right) = a$$
D
$$y\left( {\cos \alpha + \sin \alpha } \right) + x\left( {\sin \alpha + \cos \alpha } \right) = a$$
3
AIEEE 2003
+4
-1
Out of Syllabus
If the pair of straight lines $${x^2} - 2pxy - {y^2} = 0$$ and $${x^2} - 2qxy - {y^2} = 0$$ be such that each pair bisects the angle between the other pair, then :
A
$$pq = -1$$
B
$$p = q$$
C
$$p = -q$$
D
$$pq = 1$$.
4
AIEEE 2003
+4
-1
Locus of centroid of the triangle whose vertices are $$\left( {a\cos t,a\sin t} \right),\left( {b\sin t, - b\cos t} \right)$$ and $$\left( {1,0} \right),$$ where $$t$$ is a parameter, is :
A
$${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
B
$${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} - {b^2}$$
C
$${\left( {3x - 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
D
$${\left( {3x + 1} \right)^2} + {\left( {3y} \right)^2} = {a^2} + {b^2}$$
EXAM MAP
Medical
NEET