1
AIEEE 2004
+4
-1
Out of Syllabus
The mean and the variance of a binomial distribution are $$4$$ and $$2$$ respectively. Then the probability of $$2$$ successes is :
A
$${28 \over 256}$$
B
$${219 \over 256}$$
C
$${128 \over 256}$$
D
$${37 \over 256}$$
2
AIEEE 2004
+4
-1
The probability that $$A$$ speaks truth is $${4 \over 5},$$ while the probability for $$B$$ is $${3 \over 4}.$$ The probability that they contradict each other when asked to speak on a fact is :
A
$${4 \over 5}$$
B
$${1 \over 5}$$
C
$${7 \over 20}$$
D
$${3 \over 20}$$
3
AIEEE 2003
+4
-1
Events $$A, B, C$$ are mutually exclusive events such that $$P\left( A \right) = {{3x + 1} \over 3},$$ $$P\left( B \right) = {{1 - x} \over 4}$$ and $$P\left( C \right) = {{1 - 2x} \over 2}$$ The set of possible values of $$x$$ are in the interval.
A
$$\left[ {0,1} \right]$$
B
$$\left[ {{1 \over 3},{1 \over 2}} \right]$$
C
$$\left[ {{1 \over 3},{2 \over 3}} \right]$$
D
$$\left[ {{1 \ 3},{13 \over 3}} \right]$$
4
AIEEE 2003
+4
-1
Out of Syllabus
The mean and variance of a random variable $$X$$ having binomial distribution are $$4$$ and $$2$$ respectively, then $$P(X=1)$$ is :
A
$${1 \over 4}$$
B
$${1 \over 32}$$
C
$${1 \over 16}$$
D
$${1 \over 8}$$
EXAM MAP
Medical
NEET