Bag $B_1$ contains 6 white and 4 blue balls, Bag $B_2$ contains 4 white and 6 blue balls, and Bag $B_3$ contains 5 white and 5 blue balls. One of the bags is selected at random and a ball is drawn from it. If the ball is white, then the probability that the ball is drawn from Bag $B_2$ is:
Let S be the set of all the words that can be formed by arranging all the letters of the word GARDEN. From the set S, one word is selected at random. The probability that the selected word will NOT have vowels in alphabetical order is:
Two number $\mathrm{k}_1$ and $\mathrm{k}_2$ are randomly chosen from the set of natural numbers. Then, the probability that the value of $\mathrm{i}^{\mathrm{k}_1}+\mathrm{i}^{\mathrm{k}_2},(\mathrm{i}=\sqrt{-1})$ is non-zero, equals
Three defective oranges are accidently mixed with seven good ones and on looking at them, it is not possible to differentiate between them. Two oranges are drawn at random from the lot. If $x$ denote the number of defective oranges, then the variance of $x$ is