1
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
In a binomial distribution $$B\left( {n,p = {1 \over 4}} \right),$$ if the probability of at least one success is greater than or equal to $${9 \over {10}},$$ then $$n$$ is greater than :
A
$${1 \over {\log _{10}^4 + \log _{10}^3}}$$
B
$${9 \over {\log _{10}^4 - \log _{10}^3}}$$
C
$${4 \over {\log _{10}^4 - \log _{10}^3}}$$
D
$${1 \over {\log _{10}^4 - \log _{10}^3}}$$
2
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
A die is thrown. Let $$A$$ be the event that the number obtained is greater than $$3.$$ Let $$B$$ be the event that the number obtained is less than $$5.$$ Then $$P\left( {A \cup B} \right)$$ is :
A
$${3 \over 5}$$
B
$$0$$
C
$$1$$
D
$${2 \over 5}$$
3
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
It is given that the events $$A$$ and $$B$$ are such that
$$P\left( A \right) = {1 \over 4},P\left( {A|B} \right) = {1 \over 2}$$ and $$P\left( {B|A} \right) = {2 \over 3}.$$ Then $$P(B)$$ is :
A
$${1 \over 6}$$
B
$${1 \over 3}$$
C
$${2 \over 3}$$
D
$${1 \over 2}$$
4
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
Two aeroplanes $${\rm I}$$ and $${\rm I}$$$${\rm I}$$ bomb a target in succession. The probabilities of $${\rm I}$$ and $${\rm I}$$$${\rm I}$$ scoring a hit correctly are $$0.3$$ and $$0.2,$$ respectively. The second plane will bomb only if the first misses the target. The probability that the target is hit by the second plane is :
A
$$0.2$$
B
$$0.7$$
C
$$0.06$$
D
0.32
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12