A company has two plants $$A$$ and $$B$$ to manufacture motorcycles. $$60 \%$$ motorcycles are manufactured at plant $$A$$ and the remaining are manufactured at plant $$B .80 \%$$ of the motorcycles manufactured at plant $$A$$ are rated of the standard quality, while $$90 \%$$ of the motorcycles manufactured at plant $$B$$ are rated of the standard quality. A motorcycle picked up randomly from the total production is found to be of the standard quality. If $$p$$ is the probability that it was manufactured at plant $$B$$, then $$126 p$$ is
The coefficients $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ in the quadratic equation $$\mathrm{a} x^2+\mathrm{bx}+\mathrm{c}=0$$ are from the set $$\{1,2,3,4,5,6\}$$. If the probability of this equation having one real root bigger than the other is p, then 216p equals :
The coefficients $$a, b, c$$ in the quadratic equation $$a x^2+b x+c=0$$ are chosen from the set $$\{1,2,3,4,5,6,7,8\}$$. The probability of this equation having repeated roots is :
If the mean of the following probability distribution of a radam variable $$\mathrm{X}$$ :
$$\mathrm{X}$$ | 0 | 2 | 4 | 6 | 8 |
---|---|---|---|---|---|
$$\mathrm{P(X)}$$ | $$a$$ | $$2a$$ | $$a+b$$ | $$2b$$ | $$3b$$ |
is $$\frac{46}{9}$$, then the variance of the distribution is